

Hydrology Across Scale: Sensitivity of Kenya Rift lakes to climate change Lydia Olaka Dept of Geology, University of Nairobi

- History of formation and characteristics of Kenya rift Lakes
- Hydrology across scales Spatial and Temporal
- Climate
- Interconnectivity –Groundwater
- Amplifier lakes
- Recent lake level changes

I. East African Rift System and lakes

Lakes

Rift graben and crater lakes

I.I Kenya Rift System- Basins Setting

Basins Setting

- created by subsidence of the central block or tilting of one block to damming by volcanos, filled volcanic craters.
- Good archives.
- Varied erosion-deposition environments as a result of ongoing tectonic and volcanic activity initiated about 40 Ma

I.2 Climate proxies

Biological and geochemical indicators water chemistry e.g. diatom inferred salinity

Geomorphological aerial extent of paleolakes

Terrestrial pollenlake catchment conditions

2. Hydrology

- Over 10 lakes: Small - Large; Deep - Shallow; fresh - saline.
- Occur at varied elevation: climatic regimes.
- "Closed" lakes
- Most rift lakes are connected with the GW systems
 Recharge and discharge
- Complex geology, geomorphology, Hydrology and climate at different temporal and spatial scales
- Support various livelihoods and sectors of the Economy

3. Climate: Modern Rainfall Distribution

ITCZ —— CAB -----

Rainfall in EA is linked to the passage of the ITCZ and CAB modified by topography causing a strongly **bimodal** annual cycle

3. Characteristics of Catchment's

Influencing climate mechanisms ITCZ, CAB, ENSO/IOD, ISM

Orographic effects 0 m to >5000 m asl

Large lake Surface areas (e.g.Victoria: 68,800 km²)

Basins elongate along the rift

3. Lake History -Variability

Anti correlated behaviour during Little Ice Age

Rainfall

low

Verschuren et al. 2000; Alin and Cohen 2003; Russell et al. 2003; Stager et al. 2005

3.1. EARS Paleolakes African Humid Period lake highstands 15-5kyr

Paleo-Lake Nakuru (~9 to 7 kyr BP)

NORTH -SOUTH **a.** Turkana, **b.** Suguta, **c.** Baringo-Bogoria, **d.** Nakuru-Elementeita, **e.** Naivasha, **f.** Magadi- Natron,

Washbourn 1967, 1970; Butzer, 1972; Casanova et al. 1988; Vincens et al. 1986; Gillespie et al. 1983; Renault and Owen 1991; Dunkley et al. 1993; Garcin et al 2009

3.2 CKR Paleo and modern Lake Extent

NV. Area, 140 Km2 NK-EL Area 72 +20 km 2

NV. Area, 685 Km2 NK-EL Area 755km 2

Bergner et al 2009

4. Lake Variability

Lakes interpose a significant filter between the external climate driver and the sedimentary record

5. Geomorphology

Lake Morphometry

Graben shaped

Pan shaped

36.3

36.1

36.3

Nakuru-Elmenteita

36.5

36.2

36.5

Longitude

36.7

36.3

36.7

Naivasha

Olaka et al., 2010, JOPL

5.1. Lake Responses

Olaka et al 2011 PhD thesis

Hypsometry

Cumulative Fraction of Total Area

Olaka et al., 2010, JOPL Olaka et al 2011 PhD thesis

6. Groundwater

Hydraulic Gradient of the EARS Basins

- Hydraulic gradient
- Flow pathways, Faults

6.1. Ground Water Flow in the CKR

Rift axis flow to the south and north

Clarke et al 1990

6.2 Groundwater flow NKR

- Groundwater flow North of Baringo
- Geochemical composition of the Lake Baringo waters reflects two physical processes:
- evaporation and the binary mixing between river water and hydrothermal fluids((Tarits et al 2006)

Area North of Baringo, showing groundwater potentiometric contours and schematic flow direction (after Allen and Darling, 1992, Darling et al., 1996)

6.3 Baringo Bogoria- Structures, Geology

6.4 Hydrology Magadi-Geochemistry

Geochemistry

Hypersaline- Na-CO₃- CI brine fed mainly by hot, alkaline (40-80°C) springs that discharge along lake marginal faults covered by thick bed of Trona (renault et al..)

6.5 Isotopic Evidence of gw connection

7.1 Groundwater Recharge and flow

Plot of ³H+³He versus δD for ground water from Lake Naivasha region.

Plot of ${}^{3}H+{}^{3}He$ versus $\delta^{18}D$, **%o** for ground water from Lake Naivasha region.

6.6 SW- GW interconnection

- Both Surface and Groundwater contribute to the lake budget-
 - input for closed lakes -rivers, rainfall, springs, hydrothermal,

1. Recharge lake

2. Discharge lake

3. Throughflow lake

Tweed et al. 2010

6.6 SW- GW interconnection

1. Lake Beseka,

Ethiopia the lake's surface area quadrupled from 11.1 km² in 1973 to 39.5 km² in 2002 attibuted to increased groundwater recharge: Damming or increased tectonics?-(Goerner et al., 2008)

6.6. SW- GW interconnection

2. Lake Tilo, Ethiopia

- Observed high diatom inferred salinity at the same time all paleoshoreline proxies show high lake levels
- Change to saline conditions at 4500 yr B.P. due to increased Geothermal groundwater flux

Telford et al., 1999; Lamb, 2001

7 Aridity index

Aridity Index values for the EARS rift lakes Humid > I Arid < I

ITCZ

Jan

A

Jul

Olaka et al., 2010, JOPL

8. Amplifier lakes

9. Recent Lake level changes 1992-2020

9.1 lake surface area changes jan2010-2013

Baringo 61.2 %

Bogoria, 26.3%

Nakuru, 71.9% Naivasha, 57.8%

9.1. Impact of lake level changes in rift lakes

- Destruction of property
- · changes in the geochemistry of the lake water
- impact on the biodiversity, flamingo, tourism, extremophiles in Bogoria,

- Lakes are Highly sensitive to climate shifts.
- Connection of Ground and surface water is high structures, geothermal activity
- a combination of regional-scale (e.g. climatic) and sitespecific local factors- topography, Groundwater modify lake level and surface area

- 1. Enhanced monitoring network of the Hydroclimatic parameters (evaporation, groundwater)
- 2. Flood models for the lakes need to be developed, considering the projected climate changes
- 3. Exploring Adaptation options
- 4. Landuse planning

Acknowledgements

- Potsdam Universitaet,
- DAAD,
- DFG
- VolkswagenStiftung
- Martin Trauth, Manfred Strecker, Eric Odada, Dan Olago
- University of Nairobi

Bibliography

- Clarke MCG, Woodhall DG, Allen D, Darling G (1990). Geological, Volcanological and hydrogeological controls on the Occurrence of Geothermal activity in the area Surrounding Lake Naivasha, Kenya. British Geological Survey and Ministry of Energy, Nairobi, Kenya.
- Darling WG, Gizaw B, Arusei MK (1996). Lake groundwater relationships and fluid rock interaction in the East African rift valley, isotopic evidence. J Afr Earth Sci 22:423-431.
- IPCC (2007) Climate change 2007: The physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel for Climate change.
- Le Turdu C, Tiercelin JJ, Gibert E, Travi Y, Lezzar KE, Richert JP, Massault M, Gasse F, Bonnefille R, Decobert M, Gensous B, Jeudy V, Tamrat E, Mohammed MU, Martens K, Atnafu B, Chernet T, Williamson D, Taieb M (1999). The Ziway-Shala basin system, Main Ethiopian Rift: influence of volcanism, tectonism, and climate forcing on basin formation and sedimentation. Palaeogeogr Palaeoclimatol Palaeoecol 150:135-177
- Ojiambo BS and Lyons WB (1996). Residence times and major ions in Lake Naivasha, Kenya and their relationship to lake hydrology. In Limnology, climatology and Paleoclimatology of the East African lakes. Ed T.C. Johnson and E. O. Odada, 267-278. Amsterdam:Gordon and Breach Publ.
- Ojiambo BS, Poreda RJ, Lyons WB (2001). Groundwater/ surface water interactions in Lake Naivasha, Kenya, using δ18 O, δ D, and 3 H/3 He Age dating. Groundwater 39:526-533.
- Olago D, Opere A Barongo J (2009). Holocene palaeohydrology, groundwater and climate change in the lake basins of the Central Kenya Rift. Hydrological sciences. Special Issue. Groundwater and Climate in Africa. 54, 4.
- Olaka LA, Odada, EO, Trauth MH, Olago DO (2010). The sensitivity of East African rift lakes to climate fluctuations. J Paleolimno I 44, 629-644.
- Strecker MR, Blisniuk PM, Eisbacher GH (1990). Rotation of extension direction in the central Kenya Rift. Geology 18:299-302.
- Tarits C, Renaut RW, Tiercelin J, Le Hérissé A, Cotten J, Cabon J (2006). Geochemical evidence of hydrothermal recharge in Lake Baringo, central Kenya Rift Valley. Hydrol Proces s 20:2027-2055.
- Telford RJ, Lamb HF, Mohammed MU (1999). Diatom-derived palaeoconductivity estimates for Lake Awassa, Ethiopia. J Paleolimnology 21:409-421.

Thank You

<u>lydiaolaka@uonbi.ac.ke</u> Dept of Geology

END

Summary

	Nakuru Elementeita	Naivasha						
Drainage area [km²]	2,390	3200						
Modern lakes								
Lake level m.asl	1760, 1780	1880						
Conductivity [mS/cm]	25,000, 30,000	250						
Holocene lakes								
Max. lake level m.asl	1940	2000						

African Humid Periods Protracted lake highstands

- Lake Turkana highstand ~11-5 ka
 - Paleo Lake Suguta ~14-6 ka

Both lakes where overflowing

Harvey and Grove, 1982; Owen et al., 1982; Johnson, 1987; Garcin et al., 2009, QSR

Climate variability Drivers

- Rainfall across Africa are known to resonate with the coupled Ocean-Atmosphere phenomena of ENSO and IOD
- ENSO (El Nino Southern Oscillation) 3-7 year cycle
- IOD (Indian Ocean Dipole) ca. 2 year cycle

Milankovitch Cycles

Characteristics

	Longitude	Latitude	Altitude	Lake Area	Basin	Basin Area/	Hypsometric	Precipitation	Potential	Aridity Index
					Area	Lake Area	Integral		Evaportrans	
									piration	
	deg	deg	m	km²	km²			mm/yr	mm/yr	
Nakuru-Elmenteita	36.08	-0.37	1,770	60	2,390	39.83	0.30	1,200	1,400	0.85
Naivasha	36.34	-0.77	1,885	180	3,200	17.78	0.23	1,500	1,250	1.20
Awassa	38.43	7.03	1,680	129	1,455	11.28	0.23	1,028	1,000	1.03
Suguta	36.55	2.22	275	80	12,800	160.00	0.30	1,000	2,309	0.43
Ziway-Shala	38.76	7.59	1,558	1,222	14,600	11.94	0.23	1,200	900	1.33
Magadi-Natron	36.26	-2.33	600	440	10,930	24.84	0.36	1,000	1,750	0.57
Baringo-Bogoria	36.06	0.63	967	215	6,200	34.98	0.37	1,000	2,309	0.43
Manyara	35.80	-3.62	960	12,000	23,207	1.93	0.13	1,000	2,000	0.50
Turkana	36.05	3.66	375	7,300	130,860	17.92	0.13	1,400	2,560	0.55
Victoria	36.26	-2.33	1,134	68,800	184,000	2.67	0.18	2,400	1,690	1.40